50/200 SMA crosslong
Resultados de Backtest @ WMT β€’ 1 Minute

La estrategia de Cruce de Medias MΓ³viles utiliza dos medias mΓ³viles de diferentes perΓ­odos para generar seΓ±ales de compra y venta. Aproxima la idea de un mercado en tendencia usando 2 SMAs, una SMA corta y rΓ‘pida (50) y otra SMA larga y lenta (200). Compra cuando una SMA corta (50) cruza hacia arriba una SMA larga (200), implicando que la direcciΓ³n del mercado ha cambiado. Vende cuando una SMA corta (50) cruza hacia abajo una SMA larga (200). Estas son medias mΓ³viles bastante largas, lo que significa que esta estrategia estΓ‘ naturalmente destinada a capturar movimientos mΓ‘s grandes, y por lo tanto podrΓ­a no ser adecuada para marcos de tiempo cortos. Β‘Pero suposiciones como esa no significan nada, porque la hemos backtesteado! CompruΓ©balo tΓΊ mismo.

Curva de Equidad

El backtest cubre 38 days de datos WMT β€’ 1 Minute (Walmart Inc.), desde June 3, 2025 hasta July 11, 2025.

La curva de equidad es el rendimiento de la estrategia a lo largo del tiempo. Debes compararla con el rendimiento de Compra y MantΓ©n del activo. En general, quieres que el Γ‘rea azul estΓ© bien por encima del Γ‘rea gris.

El drawdown es cuΓ‘ntas pΓ©rdidas (realizadas o no realizadas) ha tenido la estrategia si se compara con el pico mΓ‘s alto de equidad. Compara esto con el drawdown del activo para ver si tu estrategia hace un trabajo decente de aislarte de la volatilidad bajista. En general, el Γ‘rea roja debe estar bien dentro del Γ‘rea gris.

Curva de Equidad
Estrategia
Activo
Drawdown de Estrategia
Drawdown de Activo

Entonces, hemos hecho backtest de 50/200 SMA cross en 38 days de velas WMT β€’ 1 Minute.Β Este backtest resultΓ³ en 28 posiciones, con una tasa de ganancia promedio de 29% y una relaciΓ³n riesgo-recompensa de 2.35.Β Si asumes que la relaciΓ³n riesgo-recompensa de 2.35 se mantiene, necesitas una tasa de ganancia mΓ­nima de 29.9 para ser rentable. Β‘AsΓ­ que estΓ‘s jodido!Β Sin embargo, 28 posiciones es una muestra pequeΓ±a, asΓ­ que toma los resultados con mucha cautela.Β Las mΓ©tricas clave son las siguientes:

  1. Retorno Total: Retorno Total: -0.50% vs -5.40% para el activo
  2. MΓ‘ximo Drawdown: MΓ‘ximo Drawdown: -3.90% vs -6.40% para el activo
  3. ExposiciΓ³n: ExposiciΓ³n: 40.60% tiempo en el mercado
  4. Tasa de Ganancia: Tasa de Ganancia: 29.0%, vs 29.9% mΓ­nimo
  5. RelaciΓ³n Riesgo/Recompensa: RelaciΓ³n Riesgo/Recompensa: 2.35

Con esa exposiciΓ³n en mente, puedes ver que para 41% tiempo-en-mercado, obtienes 9.26% del potencial alcista del activo, y 60.94% del potencial bajista del activo.

50/200 SMA cross: entrar en una posiciΓ³n cuando

All of the following: # "Papa"
  1min Simple Moving Average (50, 0, close) Crosses β†— 1min Simple Moving Average (200, 0, close)

50/200 SMA cross: salir de una posiciΓ³n cuando

All of the following: # "India"
  1min Simple Moving Average (50, 0, close) Crosses β†˜ 1min Simple Moving Average (200, 0, close)

50/200 SMA cross @ WMT β€’ 1 Minute (-0.5%) explicado por Alex C, Mike

Alex C

Autor

These backtest results are interesting, but I see some warning flags that make me sceptical of this strategy. Let me explain why from mathematical perspective.

The win rate of 29% is quite low, even though the risk/reward ratio of 2.35 technically makes it viable. What concerns me most is the maximum losing streak of 11 trades - this indicates high probability of significant drawdowns, which the data confirms with -3.9% max drawdown. For a simple moving average crossover system, these metrics suggest the strategy might be catching too much noise on the 1-minute timeframe.

From statistical viewpoint, 28 total trades is too small sample size to make reliable conclusions. We need minimum 100 trades ideally to have statistical significance. The market exposure of 40.6% suggests the strategy is quite selective with entries, which is good, but combined with the low sample size makes me doubtful about the robustness of these results. I would recommend extending the backtest period or adjusting the parameters to generate more trading signals for proper validation.

Mike

Autor

Yo fam, this 50/200 SMA cross strategy on WMT is giving me some mixed vibes! πŸ€”

The strategy actually beat buy & hold by nearly 5% (-0.5% vs -5.4%), which is kinda lit considering the bearish market we're looking at. Plus that 40.6% market exposure means we're not stuck holding through all the dumps! πŸ“‰ That's some smart money moves right there.

But ngl, that 29% win rate is making me a bit nervous fam. Even though we're getting bigger wins than losses (0.76% wins vs -0.32% losses), that 11-trade losing streak could shake out paper hands real quick! πŸ’ŽπŸ™Œ Still, the strategy's win rate leeway is insanely good at 2870% above minimal required - that's some serious cushion for when things get rough. And that -3.9% max drawdown is way better than the asset's -6.4%, so we're definitely managing risk better than just HODLing! Not quite Lambo money yet, but definitely better than my usual Wendy's plays πŸ˜…

MΓ©tricas tabulares de 50/200 SMA cross sometido a backtest en WMT β€’ 1 Minute

Total de Operaciones28Beneficio Neto-0.5%Beneficio Compra y MantΓ©n-5.4%
Tasa de Ganancia29%Ratio Riesgo/Recompensa2.35MΓ‘ximo Drawdown-3.9%
MΓ‘ximo Drawdown del Activo-6.4%ExposiciΓ³n40.6%Promedio de Velas en PosiciΓ³n144.0
Ratio de SharpeRatio de SortinoVolatilidad Realizadaβ€”
Racha MΓ‘xima de Ganancia3Racha Promedio de Ganancia2.0Racha MΓ‘xima de PΓ©rdida11
Racha Promedio de PΓ©rdida4.0Promedio de Operaciones por Mes44.2Promedio de Operaciones por DΓ­a1.5
Desv. Est. del Retorno0.7Desv. Est. de la PΓ©rdida0.2Desv. Est. de la Ganancia0.9
Expectativa-0.0Beta0.38

Todos los backtests para 50/200 SMA cross

common.strategyexposiciΓ³nrendimiento vs activodrawdown vs activotasa de gananciarecompensa/ riesgo
BTCUSDT β€’ 1 Minute
57%(5.4%/8.9%) 0.61x(-2.0%/-1.9%) 1.05x395.4
EURUSD β€’ 1 Minute
61%(-1.1%/-1.0%) 1.10x(-1.2%/-1.2%) 1.00x201.1
GLD β€’ 1 Minute
52%(1.7%/0.0%) Infinityx(-2.5%/-5.5%) 0.45x362.5
NVDA β€’ 1 Minute
61%(1.2%/16.7%) 0.07x(-7.9%/-4.4%) 1.80x282.9
SPY β€’ 1 Minute
60%(0.5%/4.6%) 0.11x(-2.5%/-2.1%) 1.19x332.3
TSLA β€’ 1 Minute
47%(6.6%/-10.3%) -0.64x(-11.2%/-21.4%) 0.52x392.1
WMT β€’ 1 Minute
41%(-0.5%/-5.4%) 0.09x(-3.9%/-6.4%) 0.61x292.4
BTCUSDT β€’ 10 Minutes
57%(18.2%/22.4%) 0.81x(-8.6%/-12.1%) 0.71x413.1
EURUSD β€’ 10 Minutes
55%(2.5%/5.8%) 0.43x(-2.2%/-4.3%) 0.51x382.4
GLD β€’ 10 Minutes
58%(26.1%/43.7%) 0.60x(-5.9%/-8.3%) 0.71x543.1
NVDA β€’ 10 Minutes
57%(5.0%/32.9%) 0.15x(-33.4%/-42.8%) 0.78x441.4
SPY β€’ 10 Minutes
60%(6.6%/14.3%) 0.46x(-13.4%/-20.7%) 0.65x411.9
TSLA β€’ 10 Minutes
47%(18.4%/59.0%) 0.31x(-34.8%/-55.3%) 0.63x411.9
WMT β€’ 10 Minutes
60%(37.4%/40.1%) 0.93x(-10.3%/-23.8%) 0.43x621.8
BTCUSDT β€’ 1 Hour
56%(36.4%/68.2%) 0.53x(-31.3%/-30.6%) 1.02x432.2
EURUSD β€’ 1 Hour
50%(6.9%/6.8%) 1.01x(-5.7%/-9.0%) 0.63x422.4
GLD β€’ 1 Hour
60%(35.8%/117.6%) 0.30x(-26.6%/-22.2%) 1.20x363.0
NVDA β€’ 1 Hour
61%(783.4%/3126.3%) 0.25x(-51.4%/-68.0%) 0.76x523.5
SPY β€’ 1 Hour
64%(85.7%/106.7%) 0.80x(-19.0%/-35.1%) 0.54x612.3
TSLA β€’ 1 Hour
55%(2930.2%/1395.5%) 2.10x(-38.7%/-75.1%) 0.52x566.0
WMT β€’ 1 Hour
60%(33.6%/138.2%) 0.24x(-28.4%/-26.9%) 1.06x501.6
BTCUSDT β€’ Daily
59%(638.7%/1337.5%) 0.48x(-61.1%/-76.6%) 0.80x837.3
EURUSD β€’ Daily
35%(4.8%/10.8%) 0.44x(-12.2%/-23.3%) 0.52x710.7
GLD β€’ Daily
61%(242.9%/595.1%) 0.41x(-36.4%/-45.3%) 0.80x466.4
NVDA β€’ Daily
65%(83183.3%/373678.5%) 0.22x(-57.1%/-90.0%) 0.63x7716.0
SPY β€’ Daily
72%(1127.3%/1316.3%) 0.86x(-32.5%/-56.7%) 0.57x873.8
TSLA β€’ Daily
57%(3139.0%/24185.2%) 0.13x(-65.4%/-75.0%) 0.87x3825.3
WMT β€’ Daily
64%(1143.9%/13022.2%) 0.09x(-57.1%/-50.6%) 1.13x398.1