La estrategia de Cruce de Medias MΓ³viles utiliza dos medias mΓ³viles de diferentes perΓodos para generar seΓ±ales de compra y venta. Aproxima la idea de un mercado en tendencia usando 2 SMAs, una SMA corta y rΓ‘pida (50) y otra SMA larga y lenta (200). Compra cuando una SMA corta (50) cruza hacia arriba una SMA larga (200), implicando que la direcciΓ³n del mercado ha cambiado. Vende cuando una SMA corta (50) cruza hacia abajo una SMA larga (200). Estas son medias mΓ³viles bastante largas, lo que significa que esta estrategia estΓ‘ naturalmente destinada a capturar movimientos mΓ‘s grandes, y por lo tanto podrΓa no ser adecuada para marcos de tiempo cortos. Β‘Pero suposiciones como esa no significan nada, porque la hemos backtesteado! CompruΓ©balo tΓΊ mismo.
El backtest cubre 38 days de datos WMT β’ 1 Minute (Walmart Inc.), desde June 3, 2025 hasta July 11, 2025.
La curva de equidad es el rendimiento de la estrategia a lo largo del tiempo. Debes compararla con el rendimiento de Compra y MantΓ©n del activo. En general, quieres que el Γ‘rea azul estΓ© bien por encima del Γ‘rea gris.
El drawdown es cuΓ‘ntas pΓ©rdidas (realizadas o no realizadas) ha tenido la estrategia si se compara con el pico mΓ‘s alto de equidad. Compara esto con el drawdown del activo para ver si tu estrategia hace un trabajo decente de aislarte de la volatilidad bajista. En general, el Γ‘rea roja debe estar bien dentro del Γ‘rea gris.
Entonces, hemos hecho backtest de 50/200 SMA cross en 38 days de velas WMT β’ 1 Minute.Β Este backtest resultΓ³ en 28 posiciones, con una tasa de ganancia promedio de 29% y una relaciΓ³n riesgo-recompensa de 2.35.Β Si asumes que la relaciΓ³n riesgo-recompensa de 2.35 se mantiene, necesitas una tasa de ganancia mΓnima de 29.9 para ser rentable. Β‘AsΓ que estΓ‘s jodido!Β Sin embargo, 28 posiciones es una muestra pequeΓ±a, asΓ que toma los resultados con mucha cautela.Β Las mΓ©tricas clave son las siguientes:
Con esa exposiciΓ³n en mente, puedes ver que para 41% tiempo-en-mercado, obtienes 9.26% del potencial alcista del activo, y 60.94% del potencial bajista del activo.
All of the following: # "Papa" 1min Simple Moving Average (50, 0, close) Crosses β 1min Simple Moving Average (200, 0, close)
All of the following: # "India" 1min Simple Moving Average (50, 0, close) Crosses β 1min Simple Moving Average (200, 0, close)
These backtest results are interesting, but I see some warning flags that make me sceptical of this strategy. Let me explain why from mathematical perspective.
The win rate of 29% is quite low, even though the risk/reward ratio of 2.35 technically makes it viable. What concerns me most is the maximum losing streak of 11 trades - this indicates high probability of significant drawdowns, which the data confirms with -3.9% max drawdown. For a simple moving average crossover system, these metrics suggest the strategy might be catching too much noise on the 1-minute timeframe.
From statistical viewpoint, 28 total trades is too small sample size to make reliable conclusions. We need minimum 100 trades ideally to have statistical significance. The market exposure of 40.6% suggests the strategy is quite selective with entries, which is good, but combined with the low sample size makes me doubtful about the robustness of these results. I would recommend extending the backtest period or adjusting the parameters to generate more trading signals for proper validation.
Yo fam, this 50/200 SMA cross strategy on WMT is giving me some mixed vibes! π€
The strategy actually beat buy & hold by nearly 5% (-0.5% vs -5.4%), which is kinda lit considering the bearish market we're looking at. Plus that 40.6% market exposure means we're not stuck holding through all the dumps! π That's some smart money moves right there.
But ngl, that 29% win rate is making me a bit nervous fam. Even though we're getting bigger wins than losses (0.76% wins vs -0.32% losses), that 11-trade losing streak could shake out paper hands real quick! ππ Still, the strategy's win rate leeway is insanely good at 2870% above minimal required - that's some serious cushion for when things get rough. And that -3.9% max drawdown is way better than the asset's -6.4%, so we're definitely managing risk better than just HODLing! Not quite Lambo money yet, but definitely better than my usual Wendy's plays π
Total de Operaciones | 28 | Beneficio Neto | -0.5% | Beneficio Compra y MantΓ©n | -5.4% |
Tasa de Ganancia | 29% | Ratio Riesgo/Recompensa | 2.35 | MΓ‘ximo Drawdown | -3.9% |
MΓ‘ximo Drawdown del Activo | -6.4% | ExposiciΓ³n | 40.6% | Promedio de Velas en PosiciΓ³n | 144.0 |
Ratio de Sharpe | Ratio de Sortino | Volatilidad Realizada | β | ||
Racha MΓ‘xima de Ganancia | 3 | Racha Promedio de Ganancia | 2.0 | Racha MΓ‘xima de PΓ©rdida | 11 |
Racha Promedio de PΓ©rdida | 4.0 | Promedio de Operaciones por Mes | 44.2 | Promedio de Operaciones por DΓa | 1.5 |
Desv. Est. del Retorno | 0.7 | Desv. Est. de la PΓ©rdida | 0.2 | Desv. Est. de la Ganancia | 0.9 |
Expectativa | -0.0 | Beta | 0.38 |
common.strategy | exposiciΓ³n | rendimiento vs activo | drawdown vs activo | tasa de ganancia | recompensa/ riesgo |
---|---|---|---|---|---|
BTCUSDT β’ 1 Minute | 57% | (5.4%/8.9%) 0.61x | (-2.0%/-1.9%) 1.05x | 39 | 5.4 |
EURUSD β’ 1 Minute | 61% | (-1.1%/-1.0%) 1.10x | (-1.2%/-1.2%) 1.00x | 20 | 1.1 |
GLD β’ 1 Minute | 52% | (1.7%/0.0%) Infinityx | (-2.5%/-5.5%) 0.45x | 36 | 2.5 |
NVDA β’ 1 Minute | 61% | (1.2%/16.7%) 0.07x | (-7.9%/-4.4%) 1.80x | 28 | 2.9 |
SPY β’ 1 Minute | 60% | (0.5%/4.6%) 0.11x | (-2.5%/-2.1%) 1.19x | 33 | 2.3 |
TSLA β’ 1 Minute | 47% | (6.6%/-10.3%) -0.64x | (-11.2%/-21.4%) 0.52x | 39 | 2.1 |
WMT β’ 1 Minute | 41% | (-0.5%/-5.4%) 0.09x | (-3.9%/-6.4%) 0.61x | 29 | 2.4 |
BTCUSDT β’ 10 Minutes | 57% | (18.2%/22.4%) 0.81x | (-8.6%/-12.1%) 0.71x | 41 | 3.1 |
EURUSD β’ 10 Minutes | 55% | (2.5%/5.8%) 0.43x | (-2.2%/-4.3%) 0.51x | 38 | 2.4 |
GLD β’ 10 Minutes | 58% | (26.1%/43.7%) 0.60x | (-5.9%/-8.3%) 0.71x | 54 | 3.1 |
NVDA β’ 10 Minutes | 57% | (5.0%/32.9%) 0.15x | (-33.4%/-42.8%) 0.78x | 44 | 1.4 |
SPY β’ 10 Minutes | 60% | (6.6%/14.3%) 0.46x | (-13.4%/-20.7%) 0.65x | 41 | 1.9 |
TSLA β’ 10 Minutes | 47% | (18.4%/59.0%) 0.31x | (-34.8%/-55.3%) 0.63x | 41 | 1.9 |
WMT β’ 10 Minutes | 60% | (37.4%/40.1%) 0.93x | (-10.3%/-23.8%) 0.43x | 62 | 1.8 |
BTCUSDT β’ 1 Hour | 56% | (36.4%/68.2%) 0.53x | (-31.3%/-30.6%) 1.02x | 43 | 2.2 |
EURUSD β’ 1 Hour | 50% | (6.9%/6.8%) 1.01x | (-5.7%/-9.0%) 0.63x | 42 | 2.4 |
GLD β’ 1 Hour | 60% | (35.8%/117.6%) 0.30x | (-26.6%/-22.2%) 1.20x | 36 | 3.0 |
NVDA β’ 1 Hour | 61% | (783.4%/3126.3%) 0.25x | (-51.4%/-68.0%) 0.76x | 52 | 3.5 |
SPY β’ 1 Hour | 64% | (85.7%/106.7%) 0.80x | (-19.0%/-35.1%) 0.54x | 61 | 2.3 |
TSLA β’ 1 Hour | 55% | (2930.2%/1395.5%) 2.10x | (-38.7%/-75.1%) 0.52x | 56 | 6.0 |
WMT β’ 1 Hour | 60% | (33.6%/138.2%) 0.24x | (-28.4%/-26.9%) 1.06x | 50 | 1.6 |
BTCUSDT β’ Daily | 59% | (638.7%/1337.5%) 0.48x | (-61.1%/-76.6%) 0.80x | 83 | 7.3 |
EURUSD β’ Daily | 35% | (4.8%/10.8%) 0.44x | (-12.2%/-23.3%) 0.52x | 71 | 0.7 |
GLD β’ Daily | 61% | (242.9%/595.1%) 0.41x | (-36.4%/-45.3%) 0.80x | 46 | 6.4 |
NVDA β’ Daily | 65% | (83183.3%/373678.5%) 0.22x | (-57.1%/-90.0%) 0.63x | 77 | 16.0 |
SPY β’ Daily | 72% | (1127.3%/1316.3%) 0.86x | (-32.5%/-56.7%) 0.57x | 87 | 3.8 |
TSLA β’ Daily | 57% | (3139.0%/24185.2%) 0.13x | (-65.4%/-75.0%) 0.87x | 38 | 25.3 |
WMT β’ Daily | 64% | (1143.9%/13022.2%) 0.09x | (-57.1%/-50.6%) 1.13x | 39 | 8.1 |