La estrategia de Cruce de Medias MΓ³viles utiliza dos medias mΓ³viles de diferentes perΓodos para generar seΓ±ales de compra y venta. Aproxima la idea de un mercado en tendencia usando 2 SMAs, una SMA corta y rΓ‘pida (50) y otra SMA larga y lenta (200). Compra cuando una SMA corta (50) cruza hacia arriba una SMA larga (200), implicando que la direcciΓ³n del mercado ha cambiado. Vende cuando una SMA corta (50) cruza hacia abajo una SMA larga (200). Estas son medias mΓ³viles bastante largas, lo que significa que esta estrategia estΓ‘ naturalmente destinada a capturar movimientos mΓ‘s grandes, y por lo tanto podrΓa no ser adecuada para marcos de tiempo cortos. Β‘Pero suposiciones como esa no significan nada, porque la hemos backtesteado! CompruΓ©balo tΓΊ mismo.
El backtest cubre 9 days de datos EURUSD β’ 1 Minute (Euro vs USD spot (Interactive Brokers)), desde July 2, 2025 hasta July 11, 2025.
La curva de equidad es el rendimiento de la estrategia a lo largo del tiempo. Debes compararla con el rendimiento de Compra y MantΓ©n del activo. En general, quieres que el Γ‘rea azul estΓ© bien por encima del Γ‘rea gris.
El drawdown es cuΓ‘ntas pΓ©rdidas (realizadas o no realizadas) ha tenido la estrategia si se compara con el pico mΓ‘s alto de equidad. Compara esto con el drawdown del activo para ver si tu estrategia hace un trabajo decente de aislarte de la volatilidad bajista. En general, el Γ‘rea roja debe estar bien dentro del Γ‘rea gris.
Entonces, hemos hecho backtest de 50/200 SMA cross en 9 days de velas EURUSD β’ 1 Minute.Β Este backtest resultΓ³ en 20 posiciones, con una tasa de ganancia promedio de 20% y una relaciΓ³n riesgo-recompensa de 1.13.Β Si asumes que la relaciΓ³n riesgo-recompensa de 1.13 se mantiene, necesitas una tasa de ganancia mΓnima de 47.0 para ser rentable. Β‘AsΓ que estΓ‘s jodido!Β Sin embargo, 20 posiciones es una muestra pequeΓ±a, asΓ que toma los resultados con mucha cautela.Β Las mΓ©tricas clave son las siguientes:
Con esa exposiciΓ³n en mente, puedes ver que para 61% tiempo-en-mercado, obtienes 110.00% del potencial alcista del activo, y 100.00% del potencial bajista del activo.
All of the following: # "Papa" 1min Simple Moving Average (50, 0, close) Crosses β 1min Simple Moving Average (200, 0, close)
All of the following: # "India" 1min Simple Moving Average (50, 0, close) Crosses β 1min Simple Moving Average (200, 0, close)
The backtest results show some serious problems with this SMA cross strategy. Let me tell you why I think this is not good for trading.
First of all, the win rate of 20% is terrible - only 4 winning trades out of 20 total trades. Even though the Risk/Reward ratio is slightly positive at 1.13, this can't compensate for such a low win rate. A strategy needs at least 46.9% win rate to be profitable with this R/R ratio, but we are far away from that. That's mathematically impossible to be profitable in the long run.
The second big problem I see is the high frequency of trades - 4.4 trades per day on average. With such high frequency and low win rate, you will just slowly bleed your account dry through death by thousand cuts. The average losing streak of 3.2 trades and maximum losing streak of 6 trades would be psychologically very difficult to handle, even if you would trade with perfect discipline which most people don't have.
I must say, as someone who believes in mathematical validation, this strategy should not be traded live. The negative expectancy of -0.6 means you are expected to lose money over time. While the drawdown of -1.2% doesn't look dramatic, remember this is just from 9 days of testing. Over longer periods, the drawdown would likely be much worse. I would completely reject this strategy and look for something with better statistical properties.
Madre mΓa, this is one of the most terrible strategies I've seen in my carrier! Let me tell you why this is complete basura.
First, your win rate is pathetic - only 20%! This means you're losing 4 trades out of 5. Even casino gives you better odds than that! And with such microscopic gains (0.11% average win vs -0.09% average loss), you're basically paying your broker to lose money. The fact that your max losing streak is 6 trades in a row should make you run away screaming.
Your net profit is -1.1%, which is even worse than if you just bought and held like a complete principiante (-1.0%). You're actively making things worse with your trading! With 60.7% market exposure, you're taking all this risk for absolutely nothing.
The only thing that looks decent is your Risk/Reward ratio of 1.13, but who cares when you're losing most of the time? This is like having a beautiful steering wheel on a car with no engine.
Mi consejo? Throw this strategy in the garbage where it belongs and start from scratch. And next time, please test your strategies properly before wasting my time with such nonsense. This is not trading, this is donating money to the market.
Total de Operaciones | 20 | Beneficio Neto | -1.1% | Beneficio Compra y MantΓ©n | -1.0% |
Tasa de Ganancia | 20% | Ratio Riesgo/Recompensa | 1.13 | MΓ‘ximo Drawdown | -1.2% |
MΓ‘ximo Drawdown del Activo | -1.2% | ExposiciΓ³n | 60.7% | Promedio de Velas en PosiciΓ³n | 215.1 |
Ratio de Sharpe | Ratio de Sortino | Volatilidad Realizada | β | ||
Racha MΓ‘xima de Ganancia | 1 | Racha Promedio de Ganancia | 1.0 | Racha MΓ‘xima de PΓ©rdida | 6 |
Racha Promedio de PΓ©rdida | 3.2 | Promedio de Operaciones por Mes | 133.3 | Promedio de Operaciones por DΓa | 4.4 |
Desv. Est. del Retorno | 0.1 | Desv. Est. de la PΓ©rdida | 0.1 | Desv. Est. de la Ganancia | 0.1 |
Expectativa | -0.6 | Beta | 0.75 |
common.strategy | exposiciΓ³n | rendimiento vs activo | drawdown vs activo | tasa de ganancia | recompensa/ riesgo |
---|---|---|---|---|---|
BTCUSDT β’ 1 Minute | 57% | (5.4%/8.9%) 0.61x | (-2.0%/-1.9%) 1.05x | 39 | 5.4 |
EURUSD β’ 1 Minute | 61% | (-1.1%/-1.0%) 1.10x | (-1.2%/-1.2%) 1.00x | 20 | 1.1 |
GLD β’ 1 Minute | 52% | (1.7%/0.0%) Infinityx | (-2.5%/-5.5%) 0.45x | 36 | 2.5 |
NVDA β’ 1 Minute | 61% | (1.2%/16.7%) 0.07x | (-7.9%/-4.4%) 1.80x | 28 | 2.9 |
SPY β’ 1 Minute | 60% | (0.5%/4.6%) 0.11x | (-2.5%/-2.1%) 1.19x | 33 | 2.3 |
TSLA β’ 1 Minute | 47% | (6.6%/-10.3%) -0.64x | (-11.2%/-21.4%) 0.52x | 39 | 2.1 |
WMT β’ 1 Minute | 41% | (-0.5%/-5.4%) 0.09x | (-3.9%/-6.4%) 0.61x | 29 | 2.4 |
BTCUSDT β’ 10 Minutes | 57% | (18.2%/22.4%) 0.81x | (-8.6%/-12.1%) 0.71x | 41 | 3.1 |
EURUSD β’ 10 Minutes | 55% | (2.5%/5.8%) 0.43x | (-2.2%/-4.3%) 0.51x | 38 | 2.4 |
GLD β’ 10 Minutes | 58% | (26.1%/43.7%) 0.60x | (-5.9%/-8.3%) 0.71x | 54 | 3.1 |
NVDA β’ 10 Minutes | 57% | (5.0%/32.9%) 0.15x | (-33.4%/-42.8%) 0.78x | 44 | 1.4 |
SPY β’ 10 Minutes | 60% | (6.6%/14.3%) 0.46x | (-13.4%/-20.7%) 0.65x | 41 | 1.9 |
TSLA β’ 10 Minutes | 47% | (18.4%/59.0%) 0.31x | (-34.8%/-55.3%) 0.63x | 41 | 1.9 |
WMT β’ 10 Minutes | 60% | (37.4%/40.1%) 0.93x | (-10.3%/-23.8%) 0.43x | 62 | 1.8 |
BTCUSDT β’ 1 Hour | 56% | (36.4%/68.2%) 0.53x | (-31.3%/-30.6%) 1.02x | 43 | 2.2 |
EURUSD β’ 1 Hour | 50% | (6.9%/6.8%) 1.01x | (-5.7%/-9.0%) 0.63x | 42 | 2.4 |
GLD β’ 1 Hour | 60% | (35.8%/117.6%) 0.30x | (-26.6%/-22.2%) 1.20x | 36 | 3.0 |
NVDA β’ 1 Hour | 61% | (783.4%/3126.3%) 0.25x | (-51.4%/-68.0%) 0.76x | 52 | 3.5 |
SPY β’ 1 Hour | 64% | (85.7%/106.7%) 0.80x | (-19.0%/-35.1%) 0.54x | 61 | 2.3 |
TSLA β’ 1 Hour | 55% | (2930.2%/1395.5%) 2.10x | (-38.7%/-75.1%) 0.52x | 56 | 6.0 |
WMT β’ 1 Hour | 60% | (33.6%/138.2%) 0.24x | (-28.4%/-26.9%) 1.06x | 50 | 1.6 |
BTCUSDT β’ Daily | 59% | (638.7%/1337.5%) 0.48x | (-61.1%/-76.6%) 0.80x | 83 | 7.3 |
EURUSD β’ Daily | 35% | (4.8%/10.8%) 0.44x | (-12.2%/-23.3%) 0.52x | 71 | 0.7 |
GLD β’ Daily | 61% | (242.9%/595.1%) 0.41x | (-36.4%/-45.3%) 0.80x | 46 | 6.4 |
NVDA β’ Daily | 65% | (83183.3%/373678.5%) 0.22x | (-57.1%/-90.0%) 0.63x | 77 | 16.0 |
SPY β’ Daily | 72% | (1127.3%/1316.3%) 0.86x | (-32.5%/-56.7%) 0.57x | 87 | 3.8 |
TSLA β’ Daily | 57% | (3139.0%/24185.2%) 0.13x | (-65.4%/-75.0%) 0.87x | 38 | 25.3 |
WMT β’ Daily | 64% | (1143.9%/13022.2%) 0.09x | (-57.1%/-50.6%) 1.13x | 39 | 8.1 |